博客
关于我
取整函数的极限问题
阅读量:478 次
发布时间:2019-03-06

本文共 1919 字,大约阅读时间需要 6 分钟。

  1. I = lim ⁡ x → 0 x [ 10 x ] I=\lim \limits_{x \rightarrow 0}x\left[\frac{10}{x}\right] I=x0limx[x10],其中 [ ] [] []为取整符号

解析:根据 x − 1 < [ x ] ⩽ x x-1<[x] \leqslant x x1<[x]x,有

10 x − 1 < [ 10 x ] ⩽ 10 x \frac{10}{x}-1<\left[\frac{10}{x}\right] \leqslant \frac{10}{x} x101<[x10]x10
于是
{ x > 0 ⇒ 10 − x < x ⋅ [ 10 x ] ⩽ 10 x < 0 ⇒ 10 − x > x ⋅ [ 10 x ] ⩾ 10 \left\{\begin{array}{l} {x>0 \Rightarrow 10-x<x \cdot\left[\frac{10}{x}\right] \leqslant 10} \\ {x<0 \Rightarrow 10-x>x \cdot\left[\frac{10}{x}\right] \geqslant 10} \end{array}\right. {
x>010x<x[x10]10x<010x>x[x10]10
故可得 I = lim ⁡ x → 0 [ 10 x ] = 10 I=\lim \limits_{x \rightarrow 0}\left[\frac{10}{x}\right]=10 I=x0lim[x10]=10

  1. x = 1 n ( n = 2 , 3 , ⋯   ) x=\frac{1}{n}(n=2,3, \cdots) x=n1(n=2,3,)是函数 f ( x ) = x ⋅ [ 1 x ] f(x)=x \cdot\left[\frac{1}{x}\right] f(x)=x[x1]的().
    A.无穷间断点
    B.跳跃间断点
    C.可去间断点
    D.连续间断点

解析:当 x → ( 1 n ) − x \rightarrow\left(\frac{1}{n}\right)^{-} x(n1),有:

1 n + 1 < x < 1 n , n < 1 x < n + 1 \frac{1}{n+1}<x<\frac{1}{n}, \quad n<\frac{1}{x}<n+1 n+11<x<n1,n<x1<n+1
[ 1 n ] = n [\frac{1}{n}]=n [n1]=n,所以
lim ⁡ x → ( 1 n ) − f ( x ) = lim ⁡ x → ( 1 n ) x ⋅ [ 1 x ] = 1 \lim _{x \rightarrow\left(\frac{1}{n}\right)^{-}} f(x)=\lim _{x \rightarrow\left(\frac{1}{n}\right)} x \cdot\left[\frac{1}{x}\right]=1 x(n1)limf(x)=x(n1)limx[x1]=1
x → ( 1 n ) + x \rightarrow\left(\frac{1}{n}\right)^{+} x(n1)+,有 1 n < x < 1 n − 1 , n − 1 < 1 x < n \frac{1}{n}<x<\frac{1}{n-1}, n-1<\frac{1}{x}<n n1<x<n11,n1<x1<n,故 [ 1 n ] = n − 1 [\frac{1}{n}]=n-1 [n1]=n1,所以
lim ⁡ x → ( 1 n ) + f ( x ) = lim ⁡ x → ( 1 n ) + x ⋅ [ 1 x ] = n − 1 n < 1 \lim _{x \rightarrow\left(\frac{1}{n}\right)^{+}} f(x)=\lim _{x \rightarrow\left(\frac{1}{n}\right)^{+}} x \cdot\left[\frac{1}{x}\right]=\frac{n-1}{n}<1 x(n1)+limf(x)=x(n1)+limx[x1]=nn1<1
x = 1 n ( n = 2 , 3 , ⋯   ) x=\frac{1}{n}(n=2,3, \cdots) x=n1(n=2,3,) f ( x ) f(x) f(x)的跳跃间断点,所以B正确。

转载地址:http://ivndz.baihongyu.com/

你可能感兴趣的文章
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_无分页功能_02_转换数据_分割数据_提取JSON数据_替换拼接SQL_添加分页---大数据之Nifi工作笔记0037
查看>>
NIFI从PostGresql中离线读取数据再导入到MySql中_带有数据分页获取功能_不带分页不能用_NIFI资料太少了---大数据之Nifi工作笔记0039
查看>>
nifi使用过程-常见问题-以及入门总结---大数据之Nifi工作笔记0012
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
NIFI大数据进阶_FlowFile拓扑_对FlowFile内容和属性的修改删除添加_介绍和描述_以及实际操作---大数据之Nifi工作笔记0023
查看>>
NIFI大数据进阶_NIFI的模板和组的使用-介绍和实际操作_创建组_嵌套组_模板创建下载_导入---大数据之Nifi工作笔记0022
查看>>
NIFI大数据进阶_NIFI监控的强大功能介绍_处理器面板_进程组面板_summary监控_data_provenance事件源---大数据之Nifi工作笔记0025
查看>>
NIFI大数据进阶_NIFI集群知识点_认识NIFI集群以及集群的组成部分---大数据之Nifi工作笔记0014
查看>>
NIFI大数据进阶_NIFI集群知识点_集群的断开_重连_退役_卸载_总结---大数据之Nifi工作笔记0018
查看>>
NIFI大数据进阶_内嵌ZK模式集群1_搭建过程说明---大数据之Nifi工作笔记0015
查看>>
NIFI大数据进阶_外部ZK模式集群1_实际操作搭建NIFI外部ZK模式集群---大数据之Nifi工作笔记0017
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_01_实际操作---大数据之Nifi工作笔记0029
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>